
DYNAMIC ENGINEERING
150 DuBois, Suite B&C
Santa Cruz, CA 95060

(831) 457-8891
https://www.dyneng.com

sales@dyneng.com
Est. 1988

ccXMC-Serial-HDLC

Windows 10 WDF Driver
Documentation

HDLC, NRZ-L, UART ports

Developed with Windows Driver Foundation
Ver1.19

Revision 01p1 5/7/24

 Embedded Solutions Page 2

ccXMC-Serial-HDLC
WDF Device Drivers

Dynamic Engineering

150 DuBois, Suite B&C

Santa Cruz, CA 95060

(831) 457-8891

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and the
recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet
the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves the
right to make improvements or changes in the product described
in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without the
express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with compatible user-
provided equipment. Connection of incompatible hardware is
likely to cause serious damage.

©1988-2024 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their respective
manufactures.

 Embedded Solutions Page 3

INTRODUCTION 6

DRIVER INSTALLATION 7

Windows 10 Installation 7

Base Controls 8
IOCTL_ccXmcSerial_BASE_GET_INFO 9
IOCTL_ccXmcSerial_LOAD_PLL_DATA 9
IOCTL_ccXmcSerial_READ_PLL_DATA 10
IOCTL_ccXmcSerial_BASE_GET_STATUS 10
IOCTL_ccXmcSerial_BASE_RESET 10
IOCTL_ccXmcSerial_BASE_REGISTER_EVENT 11
IOCTL_ccXmcSerial_BASE_ENABLE_INTERRUPT 11
IOCTL_ccXmcSerial_BASE_DISABLE_INTERRUPT 11
IOCTL_ccXmcSerial_BASE_FORCE_INTERRUPT 11
IOCTL_ccXmcSerial_BASE_GET_ISR_STATUS 11
IOCTL_ccXmcSerial_BASE_BRIDGE_RECONFIG 12
IOCTL_ccXmcSerial_BASE_ENABLE_TSTCLK 12
IOCTL_ccXmcSerial_BASE_DISABLE_TSTCLK 12
IOCTL_ccXmcSerial_BASE_SET_DATA_OUT0 13
IOCTL_ccXmcSerial_BASE_GET_DATA_OUT0 13
IOCTL_ccXmcSerial_BASE_SET_DIR0 13
IOCTL_ccXmcSerial_BASE_GET_DIR0 13
IOCTL_ccXmcSerial_BASE_SET_TERM0 14
IOCTL_ccXmcSerial_BASE_GET_TERM0 14
IOCTL_ccXmcSerial_BASE_SET_MUX0 14
IOCTL_ccXmcSerial_BASE_GET_MUX0 14
IOCTL_ccXmcSerial_BASE_READ_DIRECT0 14
IOCTL_ccXmcSerial_BASE_SET_TMP 15
IOCTL_ccXmcSerial_BASE_GET_TMP 15

Port Interface Common 16
IOCTL_ccXmcSerial_CHAN_GET_INFO 16
IOCTL_ccXmcSerial_CHAN_REGISTER_EVENT 16
IOCTL_ccXmcSerial_CHAN_ENABLE_INTERRUPT 17
IOCTL_ccXmcSerial_CHAN_DISABLE_INTERRUPT 17
IOCTL_ccXmcSerial_CHAN_FORCE_INTERRUPT 17

HDLC Ports 18
IOCTL_ccXmcSerial_CHAN_WRITEFILE 18
IOCTL_ccXmcSerial_CHAN_READFILE 18
IOCTL_ccXmcSerial_CHAN_HDLC_SET_CONTROL 18

Table of Contents

 Embedded Solutions Page 4

IOCTL_ccXmcSerial_CHAN_HDLC_GET_STATE 19
IOCTL_ccXmcSerial_CHAN_HDLC_LOAD 19
IOCTL_ccXmcSerial_CHAN_HDLC_READ 19
IOCTL_ccXmcSerial_CHAN_GET_HDLC_ISR_STATUS 20

NRZL Ports 21
IOCTL_ccXmcSerial_CHAN_NRZL_WRM_FIFO 21
IOCTL_ccXmcSerial_CHAN_NRZL_RDM_FIFO 21
IOCTL_ccXmcSerial_CHAN_NRZL_LOAD_TXDFIFO 21
IOCTL_ccXmcSerial_CHAN_NRZL_READ_RXDFIFO 21
IOCTL_ccXmcSerial_CHAN_NRZL_SET_CNTL 22
IOCTL_ccXmcSerial_CHAN_NRZL_GET_CNTL 22
IOCTL_ccXmcSerial_CHAN_NRZL_SET_TXRATE 22
IOCTL_ccXmcSerial_CHAN_NRZL_GET_TXRATE 22
IOCTL_ccXmcSerial_CHAN_NRZL_SET_TXCNTL 23
IOCTL_ccXmcSerial_CHAN_NRZL_GET_TXCNTL 23
IOCTL_ccXmcSerial_CHAN_NRZL_SET_RXCNTL 23
IOCTL_ccXmcSerial_CHAN_NRZL_GET_RXCNTL 23
IOCTL_ccXmcSerial_CHAN_NRZL_LOAD_TXPFIFO 24
IOCTL_ccXmcSerial_CHAN_NRZL_READ_RXPFIFO 24
IOCTL_ccXmcSerial_CHAN_NRZL_LOAD_TXGAP 24
IOCTL_ccXmcSerial_CHAN_NRZL_READ_TXGAP 24
IOCTL_ccXmcSerial_CHAN_NRZL_LOAD_RXGAP 24
IOCTL_ccXmcSerial_CHAN_NRZL_READ_RXGAP 25
IOCTL_ccXmcSerial_CHAN_NRZL_SET_FIFO_LEVELS 25
IOCTL_ccXmcSerial_CHAN_NRZL_GET_FIFO_LEVELS 25
IOCTL_ccXmcSerial_CHAN_NRZL_GET_FIFO_COUNTS 25
IOCTL_ccXmcSerial_CHAN_GET_NRZL_ISR_STATUS 26
IOCTL_ccXmcSerial_CHAN_GET_NRZL_STATUS 26
IOCTL_ccXmcSerial_CHAN_GET_NRZL_STATUSII 26

UART Ports 27
IOCTL_UART_CHAN_SET_CONT 27
IOCTL_UART_CHAN_GET_CONT 28
IOCTL_UART_CHAN_SET_CONT_B 28
IOCTL_UART_CHAN_GET_CONT_B 29
IOCTL_UART_CHAN_GET_STATUS 30
IOCTL_UART_CHAN_CLEAR_STATUS 31
IOCTL_UART_CHAN_SET_BAUD_RATE 31
IOCTL_UART_CHAN_GET_BAUD_RATE 31
IOCTL_UART_CHAN_SET_FIFO_LEVELS 32
IOCTL_UART_CHAN_GET_FIFO_LEVELS 32
IOCTL_UART_CHAN_SET_FRAME_TIME 32
IOCTL_UART_CHAN_GET_FRAME_TIME 32
IOCTL_UART_CHAN_GET_FIFO_COUNTS 33
IOCTL_UART_CHAN_RESET_FIFOS 33
IOCTL_UART_CHAN_FORCE_INTERRUPT 34
IOCTL_UART_CHAN_GET_ISR_STATUS 34
IOCTL_UART_CHAN_SWW_TX_FIFO 34
IOCTL_UART_CHAN_SWR_RX_FIFO 34
IOCTL_UART_CHAN_WRITE_PKT_LEN 34

 Embedded Solutions Page 5

IOCTL_UART_CHAN_READ_PKT_LEN 35
IOCTL_UART_CHAN_SET_TIMER 35
IOCTL_UART_CHAN_GET_TIMER 35
IOCTL_UART_CHAN_GET_TIMER_CNT 35

WARRANTY AND REPAIR 36

Service Policy 36
Support 36

For Service Contact: 36

 Embedded Solutions Page 6

Introduction
The ccXMC-Serial-HDLC driver was developed with the Windows Driver
Foundation version 1.19 (WDF) from Microsoft, specifically the Kernel-Mode
Driver Framework (KMDF). The driver files are fully signed for Windows 10 and
11, 64 bit systems.

 ccXMC-Serial-HDLC features an FPGA to implement the PCI interface, FIFOs,
and IO processing, control and status for a combination of differential [RS-
485/LVDS] transceivers selectable RS232/RS-485 IO. There is a programmable
PLL with four clock outputs. PLLA is defined as the HDLC receive reference.
PLLB is the HDLC transmit reference when internal clock mode is in use. PLLC
is used as a reference for the NRZL interfaces. PLLD is assigned to the UARTs.
The initialization provided by this driver includes programming the PLL with the
standard frequencies. The DDR is not in use on this design. The temperature
and switch interfaces are supported with this driver.

UserAp is a stand-alone code set with a simple and powerful menu plus a series
of tests that can be run on the installed hardware. Each of the tests execute calls
to the driver, pass parameters and structures, and get results back. With the
sequence of calls demonstrated, the functions of the hardware are utilized for
loop-back testing. The software is used for manufacturing test at Dynamic
Engineering. The test software can be ported to your application to provide a
running start. The tests are simple and will quickly demonstrate the end-to-end
operation of your application making calls to the driver and interacting with the
hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a
failure occurs and stop or to continue, to program a set number of loops to
execute and more. The user can add tests to the provided test suite to try out
application ideas before committing to your system configuration. In many cases
the test configuration will allow faster debugging in a more controlled
environment before integrating with the rest of the system. The .inf file has the
design type and the system will show in the device manager after installation of
the driver.

When ccXMC-Serial-HDLC is recognized by the PCI bus configuration utility it
will start the ccXMC-Serial-HDLC driver to allow communication with the device.
IO Control calls (IOCTLs) are used to configure the board and read status. The
driver is hierarchical with “base” and “chan” drivers to support each of the
functions.

 Embedded Solutions Page 7

Note
This documentation will provide information about all calls made to the drivers,
and how the drivers interact with the device for each of these calls. For more
detailed information on the hardware implementation, refer to the ccXMC-
Serial-HDLC user manual (also referred to as the hardware manual).

Driver Installation
There are several files provided in each driver package. These files include
ccXmcSerial_Base.cat, ccXmcSerial_Base.inf, ccXmcSerial_Base.sys,
ccXmcSerial_Chan.cat, ccXmcSerial_Chan.inf, ccXmcSerial_Chan.sys, plus the
public files: ccXmcSerial_BasePublic.h, ccXmcSerial_ChanPublic.h, and
ccXmcSerial_Public.h.

The Base and Chan Public.h files are the C header files that defines the
Application Program Interface (API) for the ccXMC-Serial-HDLC driver. These
files are required at compile time by any application that wishes to interface with
the drivers, but is not needed for driver installation. Included with the UserAp file
set. The project public file includes project level constants. Driver files also
included in the UserAp.zip file set.

Windows 10 Installation
Copy the system files (6) to a CD, USB memory device, or local directory as
preferred.

With the hardware installed, power-on the host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an Other PCI Bridge Device*.
• Right-click on the Other PCI Bridge Device and select Update Driver
Software.
• Select Browse my computer for driver software.
• Select Navigate to the folder or device. If at the root select the sub folders
button.
• Select Next.
• Select Close to close the update window.
The system should now display the ORN1 adapter in the Device Manager.

Repeat to install the channel drivers.

* If the Other PCI Bridge Device is not displayed, click on the Scan for
hardware changes icon on the tool-bar.

 Embedded Solutions Page 8

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile() function
call and passing in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID),
which are defined in ccXmcSerial_BasePublic.h. See main.c in the
ccXmcSerialUserAp project for an example of how to acquire a handle to the
base and ports.

The main file is designed to work with our test menu and includes user
interaction steps to allow the user to select which board is being tested in a
multiple board environment. The integrator can hardcode for single board
systems or use an automatic loop to operate in multiple board systems without
using user interaction. For multiple user systems it is suggested that the board
number is associated with a switch setting so the calls can be associated with a
particular board from a physical point of view.

Base Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer
to a single Device Object, which controls a single board or I/O channel. IOCTLs
are called using the Win function DeviceIoControl(), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header
file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped
structure
); // used for asynchronous I/O

 Embedded Solutions Page 9

The IOCTLs defined for the -HDLC driver are described below:
Please note: some IOCTLs are defined but not used. For example the Endianess is only used
with DMA.

IOCTL_ccXmcSerial_BASE_GET_INFO

Function: Returns the device driver version, Xilinx flash revision, PLL device ID, user
switch value, Type, and device instance number.
Input: None
Output: ccXmcSerial_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that
has been selected by the user (see the board silk screen for bit position and
polarity). Instance number is the zero-based device number. Revision Major
and Revision Minor represent the current Flash revision Major.Minor. PLL
Device ID is the I2C address discovered.

// Driver/Device information
typedef struct _ccXmcSerial_BASE_DRIVER_DEVICE_INFO {
 UCHAR DriverRev;
 UCHAR DesignRev;
 UCHAR DesignRevMin;
 UCHAR DesignType;
 ULONG InstanceNum;
 UCHAR SwitchValue;
 UCHAR PllDeviceId;
 BOOLEAN BridgeCnfgd;
} ccXmcSerial_BASE_DRIVER_DEVICE_INFO, *PccXmcSerial_BASE_DRIVER_DEVICE_INFO;

IOCTL_ccXmcSerial_LOAD_PLL_DATA
Function: Writes to the internal registers of the PLL.
Input: ccXmcSerial_BASE_PLL_DATA structure
Output: None
Notes: The structure has only one field: Data – an array of 40 bytes containing
the PLL register data to write. See below for the definition.

 // Structures for IOCTLs
#define PLL_MESSAGE1_SIZE 16
#define PLL_MESSAGE2_SIZE 24
#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

typedef struct _ccXmcSerial_BASE_PLL_DATA {
 UCHAR Data[PLL_MESSAGE_SIZE];
} ccXmcSerial_BASE_PLL_DATA, *PccXmcSerial_BASE_PLL_DATA;

 Embedded Solutions Page 10

IOCTL_ccXmcSerial_READ_PLL_DATA
Function: Reads and returns the contents of the internal registers of the PLL.
Input: None
Output: ccXmcSerial_BASE_PLL_DATA structure
Notes: The PLL register data is returned in the structure in an array of 40 bytes.
See definition of ccXmcSerial_BASE_PLL_DATA above.

IOCTL_ccXmcSerial_BASE_GET_STATUS
Function: Returns the status register value
Input: None
Output: Value of status register (unsigned long integer)
Notes: Returns Base level status See HW manual for detail about the meaning
of the bits.

IOCTL_ccXmcSerial_BASE_RESET
Function: Returns the status register value
Input: None
Output: none
Notes: Causes a reset.

 Embedded Solutions Page 11

IOCTL_ccXmcSerial_BASE_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The user creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a
system pointer to the event and signals the event when a user interrupt is
serviced by the driver. The user-defined interrupt service routine waits on this
event, allowing it to respond to the interrupt. The DMA interrupts do not cause
the event to be signaled unless they are explicitly enabled in the enable
interrupts call.

IOCTL_ccXmcSerial_BASE_ENABLE_INTERRUPT
Function: Enables the Master interrupt at the base level.
Input: none
Output: None
Notes: Required to be enabled to pass interrupts from the ports to the host.
With the Master Interrupt Enable disabled the Port interrupts can be polled if
desired.

IOCTL_ccXmcSerial_BASE_DISABLE_INTERRUPT
Function: Disables the Master interrupt.
Input: none
Output: None
Notes: This call is used when interrupt processing is no longer desired.

IOCTL_ccXmcSerial_BASE_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted as long as the master interrupt is
enabled. This IOCTL is used for development, to test interrupt processing.
Force Interrupt is automatically cleared by the ISR/DPC.

IOCTL_ccXmcSerial_BASE_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user
interrupt.
Input: None
Output: ccXmcSerial_BASE_ISR_STAT structure

 Embedded Solutions Page 12

Notes: Returns the interrupt status that was read in the interrupt service routine
of the last interrupt caused by one of the enabled interrupt conditions.

typedef struct _ccXmcSerial_BASE_ISR_STAT {
 ULONG Status;
 BOOLEAN New;
} ccXmcSerial_BASE_ISR_STAT, * PccXmcSerial_BASE_ISR_STAT;

IOCTL_ccXmcSerial_BASE_BRIDGE_RECONFIG
Function: Look for upstream bridge and reprogram
Input: None
Output: None
Notes: Creates a work item that looks for an upstream bridge. For example, if
the XMC is used the bridge is on the XMC. If the PMC is used with
PCIeBPMCX1 the bridge is on the carrier. Certain settings are modified to
enhance DMA performance. To see if configuration was successful
[BridgeConfigured] check that status. Since the work item operates in parallel
allow for this call to complete. Example in the menu. Not required for this design
as no DMA implemented. Menu prints status of Bridge programming for
reference.

IOCTL_ccXmcSerial_BASE_ENABLE_TSTCLK
Function: Enable Test Clock generation
Input: None
Output: None
Notes: Enables the test clock in place of the parallel port. If the mux selects the
test clock it can be used to check the differential IO operation. See example in
test menu.

IOCTL_ccXmcSerial_BASE_DISABLE_TSTCLK
Function: Disable Test Clock generation
Input: None
Output: None
Notes: Disables the test clock. See example in test menu.

 Embedded Solutions Page 13

IOCTL_ccXmcSerial_BASE_SET_DATA_OUT0
Function: Writes a single 32-bit data-word to the Data Register
Input: ULONG
Output: None
Notes: If the IO is selected in the data mux data will flow to the output based on
the Direction Registers. IO 15-0 are affected by this and the related registers.

IOCTL_ccXmcSerial_BASE_GET_DATA_OUT0
Function: Reads and returns a single 32-bit data word from the Data Register.
Input: None
Output: ULONG
Notes: This is the register read-back and will match the SET data.

IOCTL_ccXmcSerial_BASE_SET_DIR0
Function: Writes a single 32-bit data-word to the Direction Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the data from the register is enabled onto the bus to
the external transceivers and the transceiver is enabled to transmit. When ‘0’ the
transceiver is configured to receive and the register data is isolated from the bus.
See Read Direct call.

IOCTL_ccXmcSerial_BASE_GET_DIR0
Function: Reads and returns a single 32-bit data word from the Data Enable Register.
Input: None
Output: ULONG
Notes:

 Embedded Solutions Page 14

IOCTL_ccXmcSerial_BASE_SET_TERM0
Function: Writes a single 32-bit data-word to the Termination Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the bit will be terminated. See UserAp and HW
manual for more information.

IOCTL_ccXmcSerial_BASE_GET_TERM0
Function: Reads and returns a single 32-bit data word from the Termination Register.
Input: None
Output: ULONG
Notes:

IOCTL_ccXmcSerial_BASE_SET_MUX0
Function: Writes a single 32-bit data-word to the Mux Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the programmed port operation will be used. For
bits programmed to ‘0’ the parallel port definition is used. For ports using more
than 1 IO all bits need to be set. For example, Port 0 uses IO 0,1,2,3. See
UserAp for examples.

IOCTL_ccXmcSerial_BASE_GET_MUX0
Function: Reads and returns a single 32-bit data word from the Mux Register.
Input: None
Output: ULONG
Notes:

IOCTL_ccXmcSerial_BASE_READ_DIRECT0
Function: Reads and returns a single 32-bit data word from the IO port.
Input: None
Output: ULONG
Notes: Direct data is synchronized but not filtered in any way. Get the state of
the IO (whether defined as output or input). IO15-0 returned. Upper bits set to
0x00.

 Embedded Solutions Page 15

IOCTL_ccXmcSerial_BASE_SET_TMP
Function: Write control word to Temperature interface
Input: ULONG
Output: none
Notes: The temperature interface is in hardware with the frequency, serialization
etc. handled there. Control words are written to request data. The Get version of
the call is used to poll for the updated data and retrieve the data. See the HW
manual for the bit map. Public files have bit definitions, see UserAp for example
of using the interface and converting the data.

IOCTL_ccXmcSerial_BASE_GET_TMP
Function: Reads and returns a single 32-bit data word from the IO port.
Input: none
Output: ULONG
Notes:

 Embedded Solutions Page 16

Port Interface Common

IOCTL_ccXmcSerial_CHAN_GET_INFO

Function: Returns the device driver version, user switch value, Type, and device
instance number.
Input: None
Output: ccXmcSerial_CHAN_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that
has been selected by the user (see the board silk screen for bit position and
polarity). Instance number is the zero-based device number. Revision Major
and Revision Minor represent the current Flash revision Major.Minor. PLL
Device ID is the I2C address discovered.

// Driver/Device information
typedef struct _ccXmcSerial_CHAN_DRIVER_DEVICE_INFO {
 UCHAR DriverRev;
 UCHAR ChannelNum;
 UCHAR DesignRev; // Design revision from base driver
 UCHAR DesignRevMin; // Design minor revision from base driver
 UCHAR DesignType; // Design type from base driver
 UCHAR SwitchValue; // Board user switch value from base driver
 ULONG InstanceNum; // Board instance from base driver
} ccXmcSerial_CHAN_DRIVER_DEVICE_INFO, *PccXmcSerial_CHAN_DRIVER_DEVICE_INFO;

IOCTL_ccXmcSerial_CHAN_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The user creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a
system pointer to the event and signals the event when a user interrupt is
serviced by the driver. The user-defined interrupt service routine waits on this
event, allowing it to respond to the interrupt. The DMA interrupts do not cause
the event to be signaled unless they are explicitly enabled in the enable
interrupts call.

 Embedded Solutions Page 17

IOCTL_ccXmcSerial_CHAN_ENABLE_INTERRUPT
Function: Enables the Master interrupt at the port level.
Input: none
Output: None
Notes: Required to be enabled to pass interrupts from the ports to the Base
level. With the Port Master Interrupt Enable disabled the Port status can be
polled if desired.

IOCTL_ccXmcSerial_CHAN_DISABLE_INTERRUPT
Function: Disables the Master interrupt for the port
Input: none
Output: None
Notes: This call is used when interrupt processing is no longer desired.

IOCTL_ccXmcSerial_CHAN_FORCE_INTERRUPT
Function: Causes a system interrupt to occur from the port.
Input: None
Output: None
Notes: Causes an interrupt to be asserted as long as the master enable is
enabled. This IOCTL is used for development, to test interrupt processing.
Force Interrupt is automatically cleared by the ISR/DPC.

 Embedded Solutions Page 18

HDLC Ports

IOCTL_ccXmcSerial_CHAN_WRITEFILE
Function: Write multiple data words to HDLC DPR
Input: TRANS_MULT
Output: none
Notes: Select Tx or Rx DPR, number of words to write, and array to load. See
UserAp for reference.

IOCTL_ccXmcSerial_CHAN_READFILE
Function: Read multiple data words from HDLC DPR
Input: TRANS_MULT
Output: TRANS_MULT
Notes: Select Tx or Rx DPR, number of words to read. Array is returned. See
UserAp for reference.

IOCTL_ccXmcSerial_CHAN_HDLC_SET_CONTROL
Function: Write structure to HDLC control Register
Input: HDLC CHAN CNTL
Output: none
Notes: See HW manual for bit definitions. See UserAp for examples of use.
typedef struct _HDLC_CHAN_CNTL {
 BOOLEAN TxEnable;
 BOOLEAN RxEnable;
 BOOLEAN TxExtClk;
 BOOLEAN TxClearEnable;
 BOOLEAN TxIntEnable;
 BOOLEAN TxDnIntEnable;
 BOOLEAN RxIntEnable;
 BOOLEAN AbortIntEnable;
 BOOLEAN TxIdleFrmEnd;
 BOOLEAN TxFlgsShrZero;
 BOOLEAN SendAbort;
 USHORT RxStartAddress;
 BOOLEAN LoadRxStartAddr;
 USHORT TxStartAddress;
 BOOLEAN LoadTxStartAddr;
 USHORT TxEndAddress;
 Unsigned int TxLastWrdSz : 4 // 0 = 16 bits, 8-F = reduced last word
 BOOLEAN LoadTxEndAddr;
} HDLC_CHAN_CNTL, * PHDLC_CHAN_CNTL;

 Embedded Solutions Page 19

IOCTL_ccXmcSerial_CHAN_HDLC_GET_STATE
Function: Read from HDLC control register which also includes status information
Input:
Output: HDLC CHAN STATE
Notes: See HW manual for bit definitions. See UserAp for examples of use.
typedef struct _HDLC_CHAN_STATE {
 BOOLEAN TxEnable;
 BOOLEAN RxEnable;
 BOOLEAN TxExtClk;
 BOOLEAN TxSndngFrm;
 BOOLEAN TxFrmDone;
 BOOLEAN TxClearEnable;
 BOOLEAN TxIntEnable;
 BOOLEAN TxDnIntEnable;
 BOOLEAN RxIntEnable;
 BOOLEAN AbortIntEnable;
 BOOLEAN TxFlgsShrZero;
 BOOLEAN TxIdleFrmEnd;
 USHORT RxEndAddress;
 BOOLEAN AbortReceived;
 BOOLEAN IdleDetected;
} HDLC_CHAN_STATE, * PHDLC_CHAN_STATE;

IOCTL_ccXmcSerial_CHAN_HDLC_LOAD
Function: Write a LW to HDLC DPR
Input: HDLC_WRITE_WORD
Output: none
Notes:
typedef struct _HDLC_WRITE_WORD {
 DPR_BANK Bank; // select Transmit or Receive memory bank
 ULONG Offset; // Offset Relative to channel, bank start LW count
 ULONG Data; // Data to load to address
} HDLC_WRITE_WORD, * PHDLC_WRITE_WORD;

IOCTL_ccXmcSerial_CHAN_HDLC_READ
Function: Read a LW from HDLC DPR
Input: HDLC_READ_WORD
Output: HDLC_READ_WORD
Notes:
typedef struct _HDLC_READ_WORD {
 DPR_BANK Bank; // select Transmit or Receive memory bank
 ULONG Offset; // Offset Relative to channel, bank start LW count
 ULONG Data; // Data read from address
} HDLC_READ_WORD, * PHDLC_READ_WORD;

 Embedded Solutions Page 20

IOCTL_ccXmcSerial_CHAN_GET_HDLC_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user
interrupt.
Input: None
Output: ccXmcSerial_CHAN_ISR_STAT structure
Notes: Returns the interrupt status that was read in the interrupt service routine
of the last interrupt caused by one of the enabled interrupt conditions.

typedef struct _ccXmcSerial_CHAN_ISR_STAT {
 ULONG Status;
 BOOLEAN New;
} ccXmcSerial_CHAN_ISR_STAT, *PccXmcSerial_CHAN_ISR_STAT;

 Embedded Solutions Page 21

NRZL Ports

IOCTL_ccXmcSerial_CHAN_NRZL_WRM_FIFO
Function: Write multiple data words to NRZL TX Data FIFO
Input: FIFO_MULT
Output: none
Notes: Select Count to load and provide data in array. See UserAp for
reference.
typedef struct _FIFO_MULT
{
 ULONG Count; // number of LWs to Read/Write
 ULONG Data[NRZL_FIFO_ARRAY_SIZE]; // Data to transfer
} FIFO_MULT, * PFIFO_MULT;

IOCTL_ccXmcSerial_CHAN_NRZL_RDM_FIFO
Function: Read multiple data words from NRZL RX Data FIFO
Input: FIFO_MULT
Output: FIFO_MULT
Notes: Select Count to load and receive data in array. See UserAp for
reference.
typedef struct _FIFO_MULT
{
 ULONG Count; // number of LWs to Read/Write
 ULONG Data[NRZL_FIFO_ARRAY_SIZE]; // Data to transfer
} FIFO_MULT, * PFIFO_MULT;

IOCTL_ccXmcSerial_CHAN_NRZL_LOAD_TXDFIFO
Function: Write a single LW to NRZL TX Data FIFO
Input: LW
Output: none
Notes: See UserAp for reference.

IOCTL_ccXmcSerial_CHAN_NRZL_READ_RXDFIFO
Function: Read a single LW from NRZL RX Data FIFO
Input: none
Output: LW
Notes: See UserAp for reference.

 Embedded Solutions Page 22

IOCTL_ccXmcSerial_CHAN_NRZL_SET_CNTL
Function: Write to NRZL Common Control
Input: NRZL_CHAN_CNTL
Output: none
Notes: Enable FifoBiPass to perform loop-back between TX and RX Data FIFOs.
Use Port Reset to reset the state-machines and FIFOs. See UserAp and HW
manual for reference.

IOCTL_ccXmcSerial_CHAN_NRZL_GET_CNTL
Function: Read from NRZL Common Control
Input: none
Output: NRZL_CHAN_CNTL
Notes: See UserAp for reference.
typedef struct _NRZL_CHAN_CNTL {
 BOOLEAN PortReset;
 BOOLEAN FifoBipass;
} NRZL_CHAN_CNTL, * PNRZL_CHAN_CNTL;

IOCTL_ccXmcSerial_CHAN_NRZL_SET_TXRATE
Function: Write to NRZL Transmitter Frequency Control
Input: ULONG
Output: none
Notes: load divisor to use with PLLC reference clock. N+1 is used to select 2X
the desired Tx rate. Set to 10 MHz to get 5 MHz output. See UserAp and HW
manual for reference.

IOCTL_ccXmcSerial_CHAN_NRZL_GET_TXRATE
Function: Read from NRZL Transmitter Frequency Control
Input: none
Output: ULONG
Notes: See UserAp for reference.

 Embedded Solutions Page 23

IOCTL_ccXmcSerial_CHAN_NRZL_SET_TXCNTL
Function: Write to NRZL Transmitter Control
Input: NRZL_CHAN_TXCNTL
Output: none
Notes: See UserAp and HW manual for reference.

IOCTL_ccXmcSerial_CHAN_NRZL_GET_TXCNTL
Function: Read from NRZL Transmitter Control
Input: none
Output: NRZL_CHAN_TXCNTL
Notes: See UserAp for reference.
typedef struct _NRZL_CHAN_TXCNTL {
 BOOLEAN TxEnable; // Enable Transmitter SM to operate
 BOOLEAN TxMsbLsb; // True for Msb, False for Lsb first operation
 BOOLEAN TxDataInv; // True to invert Data
 BOOLEAN TxClkInv; // True to invert clock [active low]
 BOOLEAN TxIntEnable; // True to enable Transmitter interrupt
} NRZL_CHAN_TXCNTL, * PNRZL_CHAN_TXCNTL;

IOCTL_ccXmcSerial_CHAN_NRZL_SET_RXCNTL
Function: Write to NRZL Receiver Control
Input: NRZL_CHAN_RXCNTL
Output: none
Notes: See UserAp and HW manual for reference.

IOCTL_ccXmcSerial_CHAN_NRZL_GET_RXCNTL
Function: Read from NRZL Receiver Control
Input: none
Output: NRZL_CHAN_RXCNTL
Notes: See UserAp for reference.
typedef struct _NRZL_CHAN_RXCNTL {
 BOOLEAN RxEnable; // Enable Receiver SM to operate
 BOOLEAN RxMsbLsb; // True for Msb, False for Lsb first operation
 BOOLEAN RxDataInv; // True to invert Data
 BOOLEAN RxClkInv; // True to invert clock [active low]
 BOOLEAN RxIntEnable; // True to enable Receiver interrupt
} NRZL_CHAN_RXCNTL, * PNRZL_CHAN_RXCNTL;

 Embedded Solutions Page 24

IOCTL_ccXmcSerial_CHAN_NRZL_LOAD_TXPFIFO
Function: Write to NRZL Transmitter Packet FIFO
Input: ULONG
Output: none
Notes: Write descriptor to Tx Packet FIFO to communicate to Tx State-Machine
how many bits to send. Data should be loaded into Data FIFO first to prevent
under run.

IOCTL_ccXmcSerial_CHAN_NRZL_READ_RXPFIFO
Function: Read from NRZL Receive Packet FIFO
Input: none
Output: ULONG
Notes: Retrieve Descriptor to know how many bits are stored. See UserAp for
reference.

IOCTL_ccXmcSerial_CHAN_NRZL_LOAD_TXGAP
Function: Write to NRZL Transmitter GAP control
Input: ULONG
Output: none
Notes: Set count of 2X transmitter rate clocks to count between Packets being
sent. Used for multi-packet transfer control.

IOCTL_ccXmcSerial_CHAN_NRZL_READ_TXGAP
Function: Read from NRZL TX GAP Control
Input: none
Output: ULONG
Notes: Retrieve current Gap timing parameter.

IOCTL_ccXmcSerial_CHAN_NRZL_LOAD_RXGAP
Function: Write to NRZL Receiver GAP control
Input: ULONG
Output: none
Notes: Set count of PLLC rate clocks to count before determining the last bit
received was the last bit of the transfer [packet] Set to 2x the expected period.

 Embedded Solutions Page 25

IOCTL_ccXmcSerial_CHAN_NRZL_READ_RXGAP
Function: Read from NRZL RX GAP Control
Input: none
Output: ULONG
Notes: Retrieve current Gap timing parameter.

IOCTL_ccXmcSerial_CHAN_NRZL_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full FIFO levels.
Input: NRZL_CHAN_FIFO_LEVELS structure
Output: None
Notes: The FIFO levels are used to determine at what data count the TX almost
empty and RX almost full status bits are asserted. The counts are compared to
the word counts of the transmit FIFO or receive FIFO.

typedef struct _NRZL_CHAN_FIFO_LEVELS {
 ULONG AlmostFull; // program the Rx Almost Full Status Level
 ULONG AlmostEmpty; // program the Tx Almost Empty Status Level
} NRZL_CHAN_FIFO_LEVELS, * PNRZL_CHAN_FIFO_LEVELS;

IOCTL_ccXmcSerial_CHAN_NRZL_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels.
Input: None
Output: NRZL_CHAN_FIFO_LEVELS structure
Notes: Returns the current values for the transmit almost empty and receive
almost full FIFO levels.

IOCTL_ccXmcSerial_CHAN_NRZL_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmit and receive FIFOs.
Input: None
Output: NRZL_CHAN_FIFO_COUNTS structure
Notes: Both Data and Packet FIFOs are returned. Counts are zero extended.

typedef struct _NRZL_CHAN_FIFO_COUNTS {
 ULONG TxDataCount; // Number of words in the Transmit data FIFO
 ULONG TxPktCount; // Number of words in the Transmit Packet FIFO
 ULONG RxDataCount; // Number of words in the Receive data pipeline
 ULONG RxPktCount; // Number of words in the Receive Packet FIFO
} NRZL_CHAN_FIFO_COUNTS, * PNRZL_CHAN_FIFO_COUNTS;

 Embedded Solutions Page 26

IOCTL_ccXmcSerial_CHAN_GET_NRZL_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user
interrupt.
Input: None
Output: ccXmcSerial_CHAN_ISR_STAT structure
Notes: Returns the interrupt status that was read in the interrupt service routine
of the last interrupt caused by one of the enabled interrupt conditions.

typedef struct _ccXmcSerial_CHAN_ISR_STAT {
 ULONG Status;
 BOOLEAN New;
} ccXmcSerial_CHAN_ISR_STAT, *PccXmcSerial_CHAN_ISR_STAT;

IOCTL_ccXmcSerial_CHAN_GET_NRZL_STATUS
Function: Read from NRZL Status Register.
Input: none
Output: ULONG
Notes: See NRZL status definitions in public file or HW manual.

IOCTL_ccXmcSerial_CHAN_GET_NRZL_STATUSII
Function: Read from NRZL ISR Status Register.
Input: none
Output: ULONG
Notes: See NRZL STAT2 definitions in public file or HW manual.

 Embedded Solutions Page 27

UART Ports

IOCTL_UART_CHAN_SET_CONT
Function: Specifies the base control configuration.
Input: UART_CHAN_CONT structure
Output: None
Notes: All bits are active high and are reset on system power up or reset. See the
definition of UART_CHAN_CONT below. Bit definitions can be found in the
‘UART_CHAN_CONT’ section under Register Definitions in the Hardware manual.

typedef struct _UART_CHAN_CONT {
 BOOLEAN lb_enable;
 BOOLEAN tx_enable;
 BOOLEAN rx_enable;
 BOOLEAN rx_err_int_en;
 BOOLEAN tx_fifo_amt_int_en;
 BOOLEAN rx_fifo_afl_int_en;
 BOOLEAN rx_ovrflow_int_en;
 BOOLEAN rx_pkt_lvl_int_en;
 BOOLEAN tx_break;
 BOOLEAN tx_par_en;
 BOOLEAN tx_par_odd;
 BOOLEAN tx_stop_2;
 BOOLEAN tx_len_8;
 BOOLEAN rx_par_en;
 BOOLEAN rx_par_odd;
 BOOLEAN rx_stop_2;
 BOOLEAN rx_len_8;
 BOOLEAN tx_par_lvl;
 BOOLEAN rx_par_lvl;
 TX_RX_MODE tx_mode;
 TX_RX_MODE rx_mode;
} UART_CHAN_CONT, *PUART_CHAN_CONT;

typedef enum _TX_RX_MODE {
 ONE_BYTE,
 PACKED,
 PACKETIZED,
 ALT_PACK,
 TEST, // only valid for tx mode
} TX_RX_MODE, *PTX_RX_MODE;

 Embedded Solutions Page 28

IOCTL_UART_CHAN_GET_CONT
Function: Returns the fields set in the previous call.
Input: None
Output: UART_CHAN_CONT structure
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_CONT above.

IOCTL_UART_CHAN_SET_CONT_B
Function: Specifies the base control configuration.
Input: UART_CHAN_CONT_B structure
Output: None
Notes: All bits are active high and are reset on system power up or reset. See
the definition of UART_CHAN_CONT_B below. Bit definitions can be found in the
‘UART_CHAN_CONTB’ section under Register Definitions in the Hardware
manual.

typedef struct _UART_CHAN_CONT_B {
 BOOLEAN brk_rise_int_en;
 BOOLEAN brk_fall_int_en;
 BOOLEAN brk_int_en;
 BOOLEAN tx_pck_done_int_en;
 BOOLEAN dir_tx;
 BOOLEAN term_rx;
 BOOLEAN term_tx;
 BOOLEAN rx_pck_done_int_en;
 UCHAR tx_pck_delay_mask;
 BOOLEAN tx_timer_en;
 BOOLEAN timer_int_en;
 BOOLEAN tx_timer_emsk;
 UART_TIMER_MODE timer_mode;
 BOOLEAN dir_rts;
 BOOLEAN force_rts;
 BOOLEAN inv_flow_cont;
 BOOLEAN use_cts;
 BOOLEAN term_rts;
 BOOLEAN term_cts;
 BOOLEAN pll_input;
} UART_CHAN_CONT_B, *PUART_CHAN_CONT_B;

 Embedded Solutions Page 29

typedef enum _UART_TIMER_MODE {
 DISABLE_BOTH,
 ENABLE_TIMER,
 ENABLE_TRISTATE,
 ENABLE_BOTH
} UART_TIMER_MODE, *PUART_TIMER_MODE;

IOCTL_UART_CHAN_GET_CONT_B
Function: Returns the fields set in the previous call.
Input: None
Output: UART_CHAN_CONT_B structure
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_CONT_B above.

 Embedded Solutions Page 30

IOCTL_UART_CHAN_GET_STATUS
Function: Returns the value of the channel status register.
Input: None
Output: ULONG
Notes: See Channel status bit definitions below. You can use any of the Masks
provided in the UartChanPublic.h file to mask off the desired bits. Bit definitions can be
found in the ‘UART_CHAN_STAT’ section under Register Definitions in the Hardware
manual.
// Channel Status bit definitions
#define STAT_TX_FF_MT 0x00000001
#define STAT_TX_FF_AMT 0x00000002
#define STAT_TX_FF_FL 0x00000004
#define STAT_TX_TIMER_LAT 0x00000008
#define STAT_RX_FF_MT 0x00000010
#define STAT_RX_FF_AFL 0x00000020
#define STAT_RX_FF_FL 0x00000040
#define STAT_RTS_STAT 0x00000080
#define STAT_TX_PAR_ERR_LAT 0x00000100
#define STAT_RX_FRM_ERR_LAT 0x00000200
#define STAT_RX_OVRFL_LAT 0x00000400
#define STAT_RX_LEN_OVRFL_LAT 0x00000800
#define STAT_WR_DMA_ERR 0x00001000
#define STAT_RD_DMA_ERR 0x00002000
#define STAT_WR_DMA_INT 0x00004000
#define STAT_RD_DMA_INT 0x00008000
#define STAT_RX_PCKT_FF_MT 0x00010000
#define STAT_RX_PCKT_FF_FL 0x00020000
#define STAT_TX_PCKT_FF_MT 0x00040000
#define STAT_TX_PCKT_FF_FL 0x00080000
#define STAT_LOC_INT 0x00100000
#define STAT_INT_STAT 0x00200000
#define STAT_RX_PCKT_DONE_LAT 0x00400000
#define STAT_TX_PCKT_DONE_LAT 0x00800000
#define STAT_TX_IDLE 0x01000000
#define STAT_RX_IDLE 0x02000000
#define STAT_BURST_IN_IDLE 0x04000000
#define STAT_BURST_OUT_IDLE 0x08000000
#define STAT_BRK_STAT_LAT 0x10000000
#define STAT_BRK_STAT 0x20000000
#define STAT_TX_AMT_LAT 0x40000000
#define STAT_RX_AFL_LAT 0x80000000

 Embedded Solutions Page 31

IOCTL_UART_CHAN_CLEAR_STATUS
Function: Clears specified latched status bits then returns the value of the channel
status register.
Input: ULONG
Output: None
Notes: Write to the bit to clear the specific latch to be cleared. . Bit definitions can be
found in the ‘UART_CHAN_STAT’ section under Register Definitions in the Hardware
manual.

IOCTL_UART_CHAN_SET_BAUD_RATE
Function: Write to set TX/RX baud rate.
Input: UART_CHAN_BAUD_RATE
Output: None
Notes: See the definition of UART_CHAN_BAUD_RATE below. Definition can
be found in the ‘CHAN_BAUD_RATE’ section under Register Definitions in the
Hardware manual.

typedef struct _UART_CHAN_BAUD_RATE{
 USHORT TxBaudRate;
 USHORT RxBaudRate;
} UART_CHAN_BAUD_RATE, *PUART_CHAN_BAUD_RATE;

IOCTL_UART_CHAN_GET_BAUD_RATE
Function: Read to get TX/RX baud rate
Input: None
Output: UART_CHAN_BAUD_RATE
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_BAUD_RATE above.

 Embedded Solutions Page 32

IOCTL_UART_CHAN_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full levels for
the channel.
Input: UART_CHAN_FIFO_LEVELS structure
Output: None
Notes: Almost empty and Almost full should be set to 0x0010 and 0x00EF
respectively before use of FIFOS. The FIFO counts are compared to these levels
to set the value of the CHAN_STAT_TX_FF_AMT and
CHAN_STAT_RX_FF_AFL status bits and latch the CHAN_STAT_TX_AMT_LT
and CHAN_STAT_RX_AFL_LT latched status bits. See the definition of
UART_CHAN_FIFO_LEVELS below. Full definition can be found in the
‘CHAN_TXFIFO_LVL’ and the ‘CHAN_RXFIFO_LVL’ sections under Register
Definitions in the Hardware manual.

typedef struct _UART_CHAN_FIFO_LEVELS {
 USHORT AlmostFull;
 USHORT AlmostEmpty;
} UART_CHAN_FIFO_LEVELS, *PUART_CHAN_FIFO_LEVELS;

IOCTL_UART_CHAN_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels for the
channel.
Input: None
Output: UART_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_FIFO_LEVELS above.

IOCTL_UART_CHAN_SET_FRAME_TIME
Function: Write to set Frame time
Input: ULONG
Output:
Notes: Programmable count to determine how long to wait without a new character
arriving for receiver to declare “end of packet”. Full definition can be found under
Register definitions under CHAN_FRAME_TIME in hardware manual

IOCTL_UART_CHAN_GET_FRAME_TIME
Function: Read to get Frame time
Input: None

 Embedded Solutions Page 33

Output: ULONG

IOCTL_UART_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmit and receive data
and packet-length FIFOs.
Input: None
Output: UART_CHAN_FIFO_COUNTS structure
Notes: The FIFOs are both 256 deep. See the definition of
UART_CHAN_FIFO_COUNTS below. Full definition can be found in the
‘CHAN_RX_FIFO_CNT’ AND ‘CHAN_TX_FIFO_CNT’ sections under Register
Definitions in the Hardware manual.

typedef struct _UART_CHAN_FIFO_COUNTS {
 USHORT TxDataCnt;
 USHORT TxPktCnt;
 USHORT RxDataCnt;
 USHORT RxPktCnt;
} UART_CHAN_FIFO_COUNTS, *PUART_CHAN_FIFO_COUNTS;

IOCTL_UART_CHAN_RESET_FIFOS
Function: Resets TX and/or RX FIFOs for specified channel.
Input: UART_FIFO_SEL
Output: None
Notes: Call the function with UART_TX, UART_RX, or UART_BOTH to reset the
desired FIFO. See Definition of UART_FIFO_SEL below.

typedef enum _UART_FIFO_SEL {
 UART_TX,
 UART_RX,
 UART_BOTH
} UART_FIFO_SEL, *PUART_FIFO_SEL;

 Embedded Solutions Page 34

IOCTL_UART_CHAN_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

IOCTL_UART_CHAN_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user
interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the interrupt status that was read in the interrupt service routine
of the last interrupt caused by one of the enabled channel interrupts. The new
field is true if the Status has been updated since it was last read.

IOCTL_UART_CHAN_SWW_TX_FIFO
Function: Writes a single longword to TX FIFO.
Input: Data (unsigned long)
Output: None
Notes: Data is the longword to write. Full definition can be found in the
‘CHAN_UART_FIFO’ section under Register Definitions in the Hardware manual.

IOCTL_UART_CHAN_SWR_RX_FIFO
Function: Reads a single longword from RX FIFO.
Input: None
Output: Data (unsigned long)
Notes: Read data is the one written in above IOCTL.

IOCTL_UART_CHAN_WRITE_PKT_LEN
Function: Write a received packet-length value from the packet-length FIFO.
Input: PUSHORT
Output: None
Notes: Full definition can be found in the ‘CHAN_PACKET_FIFO’ section under
Register Definitions in the Hardware manual.

 Embedded Solutions Page 35

IOCTL_UART_CHAN_READ_PKT_LEN
Function: Reads a received packet-length value from the packet-length FIFO.
Input: None
Output: UART_PACKET_FIFO
Notes: UART_PACKET_FIFO includes parity errors, frame errors, Rx overflow
errors or Rx length overflow errors that occur.

typedef struct _UART_PACKET_FIFO {
 USHORT RX_PKT_FIFO;
 BOOLEAN ParErr;
 BOOLEAN FrmErr;
 BOOLEAN RxDataOvflErr;
 BOOLEAN RxPckOvflErr;
} UART_PACKET_FIFO, *PUART_PACKET_FIFO;

IOCTL_UART_CHAN_SET_TIMER
Function: Write to set Timer register
Input: ULONG
Output:
Notes: Programmable count to define a range used in the TxTimer32 function. Full
definition can be found in the Register definitions under CHAN_TX_TIMER_MOD in
hardware manual

IOCTL_UART_CHAN_GET_TIMER
Function: Read from Timer register
Input: None
Output: ULONG
Notes: Reads back the value written in the Timer register

IOCTL_UART_CHAN_GET_TIMER_CNT
Function: Read from Timer Count register.
Input: None
Output: ULONG
Notes: Allows user to monitor the current count in the TxTimer32 function

 Embedded Solutions Page 36

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered
and options.
http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at
fault. The driver has gone through extensive testing, and in most cases it will be
“cockpit error” rather than an error with the driver. When you are sure or at least
willing to pay to have someone help then call or e-mail and arrange to work with
an engineer. We will work with you to determine the cause of the issue.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with
the documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special
software development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite B&C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

